题目内容

7.已知$tan({α-\frac{π}{4}})=3$,则$\frac{1}{sinαcosα}$的值为-$\frac{5}{2}$.

分析 由题意可解得tanα,式子弦化切为$\frac{ta{n}^{2}α+1}{tanα}$,代值计算可得.

解答 解:∵$tan({α-\frac{π}{4}})=3$,
∴$\frac{tanα-1}{1+tanα}$=3,
解得tanα=-2,
∴$\frac{1}{sinαcosα}$=$\frac{si{n}^{2}α+co{s}^{2}α}{sinαcosα}$
=$\frac{ta{n}^{2}α+1}{tanα}$=-$\frac{5}{2}$
故答案为:-$\frac{5}{2}$

点评 本题考查三角函数求值,弦化切是解决问题的关键,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网