题目内容
(1992•云南)函数y=sinxcosx+
cos2x-
的最小正周期等于( )
| 3 |
| ||
| 2 |
分析:将y=sinxcosx+
cos2x-
转化为y=sin(2x+
),即可求得其最小正周期.
| 3 |
| ||
| 2 |
| π |
| 3 |
解答:解:∵y=sinxcosx+
cos2x-
=
sin2x+
-
=
sin2x+
cos2x
=sin(2x+
),
∴其最小正周期T=
=π.
故选A.
| 3 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
=
| 1 |
| 2 |
| ||
| 2 |
=sin(2x+
| π |
| 3 |
∴其最小正周期T=
| 2π |
| 2 |
故选A.
点评:本题考查三角函数中的恒等变换应用,考查三角函数的周期性及其求法,属于中档题.
练习册系列答案
相关题目