题目内容
观察下列各式:a+b=1;a2+b2=3;a3+b3=4;a4+b4=7;a5+b5=11;…;则a10+b10=________.
123
设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.
设F1,F2是双曲线x2-=1的两个焦点,P是双曲线上的一点,且3PF1=4PF2,则△PF1F2的面积等于________.
“因为指数函数y=ax是增函数(大前提),而y=x是指数函数(小前提),所以y=x是增函数(结论)”,上面推理错误的原因是______________.
现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.
若等差数列{an}的公差为d,前n项的和为Sn,则数列为等差数列,公差为.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则数列{}为等比数列,公比为________.
设a、b为两个正数,且a+b=1,则使得+≥μ恒成立的μ的取值范围是________.
用数学归纳法证明“当n为正偶数时xn-yn能被x+y整除”第一步应验证n=________时,命题成立;第二步归纳假设成立应写成____.
已知双曲线的右焦点为,过的直线交双曲线的渐近线于A, B两点,且与其中一条渐近线垂直,若,则该双曲线的离心率是
(A) (B) (C) (D)