题目内容

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;

(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C 与平面BB1C1C所成角的正弦值。

【命题意图】本题主要考查空间线面、线线垂直的判定与性质及线面角的计算,考查空间想象能力、逻辑推论证能力,是容易题.

【解析】(Ⅰ)取AB中点E,连结CE,

∵AB==,∴是正三角形,

⊥AB,   ∵CA=CB,   ∴CE⊥AB,   ∵=E,∴AB⊥面, 

∴AB⊥;               ……6分

(Ⅱ)由(Ⅰ)知EC⊥AB,⊥AB,

又∵面ABC⊥面,面ABC∩面=AB,∴EC⊥面,∴EC⊥

∴EA,EC,两两相互垂直,以E为坐标原点,的方向为轴正方向,||为单位长度,建立如图所示空间直角坐标系

有题设知A(1,0,0),(0,,0),C(0,0,),B(-1,0,0),则=(1,0,),==(-1,0,),=(0,-,),         ……9分

=是平面的法向量,

,即,可取=(,1,-1),

=

∴直线A1C 与平面BB1C1C所成角的正弦值为.       ……12分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网