题目内容

已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=   
【答案】分析:把抛物线的参数方程化为普通方程为y2=2px,则由抛物线的定义可得及|EF|=|MF|,可得△MEF为等边三角形,设点M的坐标为(3,m ),则点E(-,m),把点M的坐标代入抛物线的方程可得 p=.再由|EF|=|ME|,解方程可得p的值.
解答:解:抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l,消去参数可得x=2p
化简可得y2=2px,表示顶点在原点、开口向右、对称轴是x轴的抛物线,故焦点F(,0),准线l的方程为x=-
则由抛物线的定义可得|ME|=|MF|,再由|EF|=|MF|,可得△MEF为等边三角形.
设点M的坐标为(3,m ),则点E(-,m).
把点M的坐标代入抛物线的方程可得m2=2×p×3,即 p=
再由|EF|=|ME|,可得 p2+m2=,即 p2+6p=9++3p,解得p=2,或p=-6 (舍去),
故答案为 2.
点评:本题主要考查抛物线的定义、标准方程,以及简单性质的应用,把参数方程化为普通方程的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网