题目内容
设等差数列{an}的前n项和为Sn,若S19>0,S20<0,则
,
,…
,中最大的项是
- A.

- B.

- C.

- D.

C
分析:由等差数列的前n项和的公式分别表示出S19>0,S20<0,然后再分别利用等差数列的性质得到a10大于0且a11小于0,得到此数列为递减数列,前10项为正,11项及11项以后为负,由已知的不等式得到数列的前1项和,前2项的和,…,前19项的和为正,前20项的和,前21项的和,…,的和为负,所以得到b11及以后的各项都为负,即可得到b10为最大项,即可得到n的值.
解答:由S19=
=19a10>0,得到a10>0;
由S20=
=10(a10+a11)<0,得到a11<0,
∴等差数列{an}为递减数列.
则a1,a2,…,a10为正,a11,a12,…为负;S1,S2,…,S19为正,S20,S21,…为负,
则
<0,
<0,…,
<0,
又S10>S1>0,a1>a10>0,得到
>
>0,
则
最大.
故选C
点评:此题考查了等差数列的前n项和公式,等差数列的性质,以及数列的函数特性,数熟练掌握等差数列的性质及求和公式是解本题的关键.
分析:由等差数列的前n项和的公式分别表示出S19>0,S20<0,然后再分别利用等差数列的性质得到a10大于0且a11小于0,得到此数列为递减数列,前10项为正,11项及11项以后为负,由已知的不等式得到数列的前1项和,前2项的和,…,前19项的和为正,前20项的和,前21项的和,…,的和为负,所以得到b11及以后的各项都为负,即可得到b10为最大项,即可得到n的值.
解答:由S19=
由S20=
∴等差数列{an}为递减数列.
则a1,a2,…,a10为正,a11,a12,…为负;S1,S2,…,S19为正,S20,S21,…为负,
则
又S10>S1>0,a1>a10>0,得到
则
故选C
点评:此题考查了等差数列的前n项和公式,等差数列的性质,以及数列的函数特性,数熟练掌握等差数列的性质及求和公式是解本题的关键.
练习册系列答案
相关题目