题目内容
已知x>0,y>0,求证:
思路分析:本题若直接运用综合法,则不易发现与已知不等式的关系,因而可试用分析法.
证明:要证明![]()
只需证(x2+y2)3>(x3+y3)2,
即证x6+3x4y2+3x2y4+y6>x6+2x3y3+y6,
即证3x4y2+3x2y4>2x3y3.
∵x>0,y>0,∴x2y2>0,
即证3x2+3y2>2xy.
∵3x2+3y2>x2+y2≥2xy,
∴3x2+3y2>2xy成立.
故![]()
深化升华 该例用分析法将一个较为复杂的不等式转化为简单的不等式,从而找到使它成立的条件.当然,该例也可以用分析综合法证明.
练习册系列答案
相关题目