题目内容
19.设函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值与最小值之和为2.分析 函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$=1+$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,令g(x)=$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值为g(x)max+1,最小值为g(x)min+1,
函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值与最小值之和为g(x)max+1+g(x)min+1.
解答 解,设函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$=1+$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,
令g(x)=$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,g(x)是R上的奇函数,其图象关于原点对称,
g(x)max+g(x)min=0
函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值为g(x)max+1,最小值为g(x)min+1,
∴函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值与最小值之和为
g(x)max+1+g(x)min+1=2,
故答案为:2.
点评 本题考查了函数的奇偶性及最值,恰当运用奇函数的性质是关键,属于基础题.
练习册系列答案
相关题目
9.已知数列{an}满足:a1=$\frac{3}{8}$,an+2-an≤3n,an+6-an≥91•3n,则a2015=( )
| A. | $\frac{{3}^{2015}}{2}$+$\frac{3}{2}$ | B. | $\frac{{3}^{2015}}{8}$ | C. | $\frac{{3}^{2015}}{8}$+$\frac{3}{2}$ | D. | $\frac{{3}^{2015}}{2}$ |
10.函数f(x)=x3-x+2在下列区间内一定存在零点的是( )
| A. | (1,2) | B. | (0,1) | C. | (-2,-1) | D. | (-1,0) |
8.若双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$与椭圆$\frac{x^2}{a^2}+\frac{y^2}{16}=1$有共同的焦点,且a>0,则a的值为( )
| A. | 5 | B. | $\sqrt{7}$ | C. | $\sqrt{15}$ | D. | $\sqrt{17}$ |