题目内容
《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把120个面包分给5个人,使每个人所得的面包数成等差数列,且使较多的三份面包数之和的
是较少两份面包数之和,问最少的1份面包数为
2
解:设五个人所分得的面包为a-2d,a-d,a,a+d,a+2d,(其中d>0);
则,(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=120,∴a=24;
由1 7 (a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d);∴24d=11a,∴d=11;
所以,最小的1分为a-2d="24-22" =2
则,(a-2d)+(a-d)+a+(a+d)+(a+2d)=5a=120,∴a=24;
由1 7 (a+a+d+a+2d)=a-2d+a-d,得3a+3d=7(2a-3d);∴24d=11a,∴d=11;
所以,最小的1分为a-2d="24-22" =2
练习册系列答案
相关题目