题目内容
【题目】已知双曲线
,抛物线
,
与
有公共的焦点
,
与
在第一象限的公共点为
,直线
的倾斜角为
,且
,则关于双曲线的离心率的说法正确的是()
A. 仅有两个不同的离心率
且
B. 仅有两个不同的离心率
且
C. 仅有一个离心率
且
D. 仅有一个离心率
且![]()
【答案】C
【解析】
的焦点为
,
双曲线交点为
,即
,设
横坐标为
,则
,
,
可化为
,
,
只有一个根在
内,故选C.
【方法点晴】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将
用有关的一些量表示出来,再利用其中的一些关系构造出关于
的等式,从而求出
的值.本题是利用点到直线的距离等于圆半径构造出关于
的等式,最后解出
的值.
练习册系列答案
相关题目