题目内容
方程sin(x+
)=
cos(x+
)的解集为______.
| π |
| 6 |
| 3 |
| π |
| 6 |
若程sin(x+
)=
cos(x+
)
即tan(x+
)=
∵tan
=
∴x+
=
+kπ,k∈Z
∴x=kπ+
,k∈Z
故方程sin(x+
)=
cos(x+
)的解集为:{x|x=kπ+
,k∈Z}
故答案为:{x|x=kπ+
,k∈Z}
| π |
| 6 |
| 3 |
| π |
| 6 |
即tan(x+
| π |
| 6 |
| 3 |
∵tan
| π |
| 3 |
| 3 |
∴x+
| π |
| 6 |
| π |
| 3 |
∴x=kπ+
| π |
| 6 |
故方程sin(x+
| π |
| 6 |
| 3 |
| π |
| 6 |
| π |
| 6 |
故答案为:{x|x=kπ+
| π |
| 6 |
练习册系列答案
相关题目