题目内容
在数列an中,已知a1=1,an=2an-1+n-2,n∈N*,n≥2.(1)求证:数列an+n是等比数列; (2) 求数列{
| an | 2n |
分析:(1)由题意数列an中,已知a1=1,an=2an-1+n-2,n∈N*,有递推关系构造新等比数列,利用等比数列的定义即可求数列an+n是等比数;
(2)有(1)知数列{
}的通项公式,根据通项公式的特点,利用错位相减法即可求其前n项和.
(2)有(1)知数列{
| an |
| 2n |
解答:解:(1)∵an=2an-1+n-2,
∴an+n=2(an-1+n-1)
∴数列{an+n}是以a1+1=2为首项,以2为公比的等比数列;
(2)有(1)知:an+n=2n即:an=2n-n,
∴
=1-
∴Sn=(1-
)+(1-
)+(1-
)+…+(1-
)=n-(
+
+
+…+
)
令Tn=
+
+
+…+
①
则
Tn=
+(
+
+…+
)-
②
①-②得:
Tn=
+(
+
+…+
)-
=
-
=1-
-
.
∴Tn=2-
-
,
∴Sn=n-2+
+
.
∴an+n=2(an-1+n-1)
∴数列{an+n}是以a1+1=2为首项,以2为公比的等比数列;
(2)有(1)知:an+n=2n即:an=2n-n,
∴
| an |
| 2n |
| n |
| 2n |
∴Sn=(1-
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 1 |
| 21 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
令Tn=
| 1 |
| 21 |
| 2 |
| 22 |
| 3 |
| 22 |
| n |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
①-②得:
| 1 |
| 2 |
| 1 |
| 21 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| n |
| 2n+1 |
| ||||
1-
|
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Tn=2-
| 1 |
| 2n+1 |
| n |
| 2n |
∴Sn=n-2+
| 1 |
| 2n+1 |
| n |
| 2n |
点评:此题考查了构造新等比数列,还考查了利用错位相减法求数列的前n项的和.
练习册系列答案
相关题目