题目内容
已知集合或,或,则( )
A. B. C. D.
圆与圆的公共弦长为( )
A. B. C.2 D.2
已知等比数列的公比,前项和为.若成等差数列,,则_______,_______.
如图,在二面角A-CD-B中,BC⊥CD,BC=CD=2,点A在直线AD上运动,满足AD⊥CD, AB=3.现将平面ADC沿着CD进行翻折,在翻折的过程中,线段AD长的取值范围是_________.
设关于x, y的不等式组表示的平面区域内存在点P满足则实数的取值范围是( )
已知椭圆经过点,离心率为.
(1)求椭圆的方程;
(2)设直线与椭圆交于、,点关于轴的对称点(与不重合),则直线与轴是否交于一定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
设满足不等式,若,,则的最小值为 .
如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点,
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点A、B,求证:弦AB的中点M必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点C、D,求△CDF1 面积的最大值.
某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(Ⅰ)求的值;
(Ⅱ)把在前排就坐的高二代表队6人分别记为,现随机从中抽取2人上台抽奖.求和至少有一人上台抽奖的概率;
(Ⅲ)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数,并按如所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.