题目内容
(2012•湖北)定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=
;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为( )
| |x| |
分析:根据新定义,结合等比数列性质anan+2=an+12,一一加以判断,即可得到结论.
解答:解:由等比数列性质知anan+2=an+12,
①f(an)f(an+2)=an2an+22=(an+12) 2=f2(an+1),故正确;
②f(an)f(an+2)=2an2an+2= 2an+an+2≠22an+1=f2(an+1),故不正确;
③f(an)f(an+2)=
=
=f2(an+1),故正确;
④f(an)f(an+2)=ln|an|ln|an+2|≠ln|an+1|2=f2(an+1),故不正确;
故选C
①f(an)f(an+2)=an2an+22=(an+12) 2=f2(an+1),故正确;
②f(an)f(an+2)=2an2an+2= 2an+an+2≠22an+1=f2(an+1),故不正确;
③f(an)f(an+2)=
| |an||an+2| |
| |an+1|2 |
④f(an)f(an+2)=ln|an|ln|an+2|≠ln|an+1|2=f2(an+1),故不正确;
故选C
点评:本题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键.
练习册系列答案
相关题目