题目内容
【题目】已知等差数列
的首项为
,公差为
,前n项和为
,且满足
,
.
(1)证明
;
(2)若
,
,当且仅当
时,
取得最小值,求首项
的取值范围.
【答案】(1)证明见解析;(2)![]()
【解析】
(1)根据等差数列的前n项和公式,变形可证明
为等差数列.结合条件
,
,可得
,进而表示出
.由
为等差数列,表示出
,化简变形后结合不等式性质即可证明
.
(2)将三角函数式分组,提公因式后结合同角三角函数关系式化简.再由平方差公式及正弦的和角与差角公式合并.根据条件等式,结合等差数列性质,即可求得
.由
,即可确定
.当且仅当
时,
取得最小值,可得不等式组,即可得首项
的取值范围.
(1)证明:等差数列
的前n项和为
,
则![]()
所以
,
,
故
为等差数列,
因为
,
,所以![]()
,解得
,
因为
,
得![]()
故
,从而
.
(2)而![]()
![]()
![]()
![]()
.
由条件![]()
又由等差数列性质知:![]()
所以
,
因为
,所以
,那么
.
等差数列
,当且仅当
时,
取得最小值.
,
所以
.
练习册系列答案
相关题目
【题目】某专卖店为了对新产品进行合理定价,将该产品按不同的单价试销,调查统计如下表:
售价 | 4 | 5 | 6 | 7 | 8 |
周销量 | 90 | 85 | 83 | 79 | 73 |
(1)求周销量y(件)关于售价x(元)的线性回归方程
;
(2)按(1)中的线性关系,已知该产品的成本为2元/件,为了确保周利润大于598元,则该店应该将产品的售价
定为多少?
参考公式:
,
.
参考数据:
,![]()