题目内容
数列{an}中,a1=
,前n项和Sn满足Sn+1-Sn=(
)n+1(n∈N*).
(Ⅰ)求数列{an}的通项公式an以及前n项和Sn;
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅰ)求数列{an}的通项公式an以及前n项和Sn;
(Ⅱ)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.
(Ⅰ)由Sn+1-Sn=(
)n+1得an+1=(
)n+1(n∈N*);
又a1=
,故an=(
)n(n∈N*)
从而sn=
=
[1-(
)n](n∈N*).
(Ⅱ)由(Ⅰ)可得S1=
,S2=
,S3=
.
从而由S1,t(S1+S2),3(S2+S3)成等差数列可得:
+3×(
+
)=2×(
+
)t,解得t=2.
| 1 |
| 3 |
| 1 |
| 3 |
又a1=
| 1 |
| 3 |
| 1 |
| 3 |
从而sn=
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 3 |
(Ⅱ)由(Ⅰ)可得S1=
| 1 |
| 3 |
| 4 |
| 9 |
| 13 |
| 27 |
从而由S1,t(S1+S2),3(S2+S3)成等差数列可得:
| 1 |
| 3 |
| 4 |
| 9 |
| 13 |
| 27 |
| 1 |
| 3 |
| 4 |
| 9 |
练习册系列答案
相关题目