题目内容

已知(x0,y0)是直线x+y=2k-1与圆x2+y2=k2+2k-3的交点,则x0y0的取值范围为[
11-6
2
4
11+6
2
4
].
分析:先根据直线与圆相交,圆心到直线的距离小于等于半径,以及圆半径为正数,求出k的范围,再根据(x0,y0)是直线x+y=2k-1与圆x2+y2=k2+2k-3的交点,满足直线与圆方程,代入直线与圆方程,化简,求出用k表示的x0y0的式子,根据k的范围求x0y0的取值范围.
解答:解:∵直线x+y=2k-1与圆x2+y2=k2+2k-3
∴圆心(0.0)到直线的距离d=
|1-2k|
2
k2+2k-3

解得
4-
2
2
≤k≤
4+
2
2

又∵圆x2+y2=k2+2k-3,∴k2+2k-3>0
解得,k<-3,或k>1
∴k的取值范围为
4-
2
2
≤k≤
4+
2
2

∵(x0,y0)是直线x+y=2k-1与圆x2+y2=k2+2k-3的交点,
∴x0+y0=2k-1,①x02+y02=k2+2k-3②
2-②,得,2x0y0=3k2-6k+4
4-
2
2
≤k≤
4+
2
2
时,2x0y0=3k2-6k+4是k的增函数
∴当k=
4-
2
2
,x0y0有最小值为
11-6
2
4

当k=
4+
2
2
,x0y0有最大值为
11+6
2
4

∴x0y0的取值范围为[
11-6
2
4
11+6
2
4
]
故答案为:[
11-6
2
4
11+6
2
4
]
点评:本题主要考察了直线与圆相交位置关系的判断,做题时考虑要全面,不要丢情况.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网