题目内容
若实数满足,且,则的最大值为 .
某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨,那么该企业可获得最大利润是( )
A.12万元 B.20万元 C.25万元 D.27万元
设_______.
已知实数x,y满足条件若目标函数的最小值为5,其最大值为( )
A.10 B.12 C.14 D.15
已知函数满足,则的单调减区间为( )
A. B. C. D.
已知各顶点都在同一个球面上的正四棱锥高为,底面边长为,则这个球的表面积是 .
一盒中装有各色球12只,其中5个红球,4个黑球,2个白球,1个绿球;从中随机取出1球.求:
(1)取出的1球是红球或黑球的概率;
(2)取出的1球是红球或黑球或白球的概率.
已知函数的在区间上的最小值为0.
(Ⅰ)求常数a的值;
(Ⅱ)当时,求使成立的x的集合.
定义在上的函数满足对任意都有.
且时,,
(1)求证:为奇函数;
(2)试问在上是否有最值?若有,求出最值;若无,说明理由;
(3)若对任意恒成立,求实数的取值范围.