题目内容
已知函数(R)是偶函数,其部分图象如图所示,则在上与函数的单调性相同的是( )
A. B. C. D.
求的流程图程序如图所示,其中①应为 ( )
A. B.
C. D.
若对于定义在R上的函数 ,其图象是连续不断的,且存在常数使得对任意实数都成立,则称 是一个“—伴随函数”.有下列关于 “—伴随函数”的结论:
①是常数函数中唯一个“—伴随函数”;
②不是“—伴随函数”;
③是一个“—伴随函数”;
④“—伴随函数”至少有一个零点.
其中不正确的序号是_________(填上所有不正确的结论序号).
(本小题共14分)已知椭圆:,右焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆有且只有一个公共点,且与圆相交于两点,问是否成立?请说明理由.
数列中,如果,且,那么数列的前5项的和的值为 .
等于( )
A.1 B. C.2 D.
(本小题满分13分)已知函数的部分图象如图所示.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递增区间.
(本小题满分13分)某学校实验室有浓度为和的两种溶液.在使用之前需要重新配制溶液,具体操作方法为取浓度为和的两种溶液各分别装入两个容积都为的锥形瓶中,先从瓶中取出溶液放入瓶中,充分混合后,再从瓶中取出溶液放入瓶中,再充分混合.以上两次混合过程完成后算完成一次操作.设在完成第次操作后,瓶中溶液浓度为,瓶中溶液浓度为.
(1)请计算,并判定数列是否为等比数列?若是,求出其通项公式;若不是,请说明理由;
(2)若要使得两个瓶中的溶液浓度之差小于,则至少要经过几次?
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点.
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.