题目内容

如图,四面体DABC的体积为
1
6
,且满足∠ACB=45°,AC=
2
,AD+BC=2
,则线段CD的长度是(  )
分析:设四棱锥D-ABC的高为DA',结合点到平面的距离垂线段最短,我们可以构造一个不等式,结合基本不等式,我们易判断出AD与平面ABC垂直,并且可以求出BC及AC的长,结合勾股定理即可得到答案.
解答:解:作DA'⊥平面ABC,则AD≥A'D
∴VD-ABC=
1
3
•A′D(
1
2
•AC•BC•sin45°)=
1
6
1
3
•AD(
1
2
•AC•BC•sin45°),即AD•BC•
AC
2
≥1
由基本不等式得AD+BC+
AC
2
3
3AD•BC•
AC
2
≥3
当且仅当AD=BC=
AC
2
=1时取等号,
而AD+BC+
AC
2
=3,故AD'=AD=1,即AD⊥平面ABC
∴AD⊥AC
∴CD=
1+2
=
3

故选A.
点评:本题考查直线与平面垂直,考查基本不等式的运用,其中根据已知条件,结合基本不等式判断出AD与平面ABC垂直,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网