题目内容
【题目】如图,椭圆
经过点
,离心率
,直线
的方程为
.
![]()
求椭圆
的方程;
是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
,
,
的斜率为
,
,
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
【答案】(Ⅰ)
;(Ⅱ)存在常数
符合题意.
【解析】试题分析:(1)根据离心率得a,b,c三者关系,再将P点坐标代入椭圆方程,解得
,
.(2)先根据两点斜率公式化简
,以及
,再利用直线方程与椭圆方程联立方程组,结合韦达定理化简
,最后作商得
的值
试题解析:
由
在椭圆上得,
①
依题设知
,则
②
②带入①解得
,
,
.
故椭圆
的方程为
.
由题意可设
的斜率为
,
则直线
的方程为
③
代入椭圆方程
并整理,得
,
设
,
,则有
,
④
在方程③中令
得,
的坐标为
.
从而
,
,
.
注意到
,
,
共线,则有
,即有
.
所以
⑤
④代入⑤得
,
又
,所以
,故存在常数
符合题意.
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数
(份)与收入
(元)之间有如下的对应数据:
外卖份数 | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
![]()
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式
,
;
②参考数据:
,
,
.
【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数
(份)与收入
(元)之间有如下的对应数据:
外卖份数 | 2 | 4 | 5 | 6 | 8 |
收入 | 30 | 40 | 60 | 50 | 70 |
![]()
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计外卖份数为12份时,收入为多少元.
注:①参考公式:线性回归方程系数公式
,
;
②参考数据:
,
,
.
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如表:
| 1 | 2 | 3 | 4 |
| 12 | 28 | 42 | 56 |
![]()
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合
与
的回归模型,并用相关系数甲乙说明;
(Ⅲ)建立
关于
的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:
,
,
.
参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.