题目内容

5、若f(x)是R上的增函数,且f(-1)=-4,f(2)=2,设P={x|f(x+t)<2},Q={x|f(x)<-4},若“x∈P”是“x∈Q”的充分不必要条件,则实数t的取值范围是
(3,+∞)
分析:本题考察的充要条件的性质,由充要条件性质,“谁大谁必要,谁小谁充分”,我们易得P?M,然后再根据集合包含运算关系,求出实数t的取值范围.
解答:解:∵“x∈P”是“x∈Q”的充分不必要条件
∴P?M,
又∵f(x)是R上的增函数,且f(-1)=-4,f(2)=2,
∴Q={x|f(x)<-4}={x|x<-1},
P={x|f(x+t)<2}={x|x+t<2}={x|x<2-t},
则2-t<-1
则t>3
故答案为:(3,+∞)
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网