题目内容

14.在四面体P-ABC中,PA=PB=PC=1,∠APB=∠BPC=∠CPA=90°,则该四面体P-ABC的外接球的表面积为(  )
A.πB.$\sqrt{3}$πC.D.

分析 以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P-ABC外接球的表面积

解答 解:由题意,以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P-ABC外接球.
∵长方体的对角线长为$\sqrt{1+1+1}$=$\sqrt{3}$,
∴球直径为$\sqrt{3}$,半径R=$\frac{\sqrt{3}}{2}$,
因此,三棱锥P-ABC外接球的表面积是4πR2=4π×($\frac{\sqrt{3}}{2}$)2=3π
故选:D.

点评 本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网