题目内容
已知函数f(x)=
x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数m的取值范围是
- A.m≥

- B.m>

- C.m≤

- D.m<

A
分析:要找m的取值使f(x)+9≥0恒成立,思路是求出f′(x)并令其等于零找出函数的驻点,得到函数f(x)的最小值,使最小值大于等于-9即可求出m的取值范围.
解答:因为函数f(x)=
x4-2x3+3m,所以f′(x)=2x3-6x2.
令f′(x)=0得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-
.
不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,
所以3m-
≥-9,解得m≥
.
故答案选A.
点评:考查学生找函数恒成立问题时的条件的能力.
分析:要找m的取值使f(x)+9≥0恒成立,思路是求出f′(x)并令其等于零找出函数的驻点,得到函数f(x)的最小值,使最小值大于等于-9即可求出m的取值范围.
解答:因为函数f(x)=
令f′(x)=0得x=0或x=3,经检验知x=3是函数的一个最小值点,所以函数的最小值为f(3)=3m-
不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,
所以3m-
故答案选A.
点评:考查学生找函数恒成立问题时的条件的能力.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|