题目内容
| 1 | 2 |
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)已知曲线C与x轴的两交点为A、B,P是曲线C上异于A,B的动点,直线AP与曲线C在点B处的切线交于点D,当点P运动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.
分析:(Ⅰ)设点M(x,y),利用条件可得等式,化简,可得曲线C的轨迹方程;
(Ⅱ)设出直线方程,代入椭圆方程,确定P的坐标,求出PF的方程,验证圆心到直线的距离,即可得到结论.
(Ⅱ)设出直线方程,代入椭圆方程,确定P的坐标,求出PF的方程,验证圆心到直线的距离,即可得到结论.
解答:
解:(Ⅰ)设点M(x,y),则据题意有
=
则4[(x-1)2+y2]=(x-4)2,
即3x2+4y2=12,∴
+
=1
故曲线C的方程为
+
=1,…(5分)
(Ⅱ)如图由曲线C方程知A(-2,0),B(2,0),在点B处的切线方程为x=2.
以BD为直径的圆与直线PF相切.
证明如下:由题意可设直线AP的方程为y=k(x+2)(k≠0).
则点D坐标为(2,4k),BD中点E的坐标为(2,2k).
直线方程代入椭圆方程,可得(3+4k2)x2+16k2x+16k2-12=0.
设点P的坐标为(x0,y0),则-2x0=
.
所以x0=
,y0=
. …(7分)
因为点F坐标为(1,0),
当k=±
时,点P的坐标为(1,±
),点D的坐标为(2,±2).
直线PF⊥x轴,此时以BD为直径的圆与直线PF相切.
当k≠±
时,则直线PF的斜率kPF=
=
.
所以直线PF的方程为y=
(x-1).
点E到直线PF的距离d=
=2|k|.
又因为|BD|=2R=4|k|,故以BD为直径的圆与直线PF相切.
综上得,当直线AP绕点A转动时,以BD为直径的圆与直线PF相切.…(15分)
| ||
| |x-4| |
| 1 |
| 2 |
则4[(x-1)2+y2]=(x-4)2,
即3x2+4y2=12,∴
| x2 |
| 4 |
| y2 |
| 3 |
故曲线C的方程为
| x2 |
| 4 |
| y2 |
| 3 |
(Ⅱ)如图由曲线C方程知A(-2,0),B(2,0),在点B处的切线方程为x=2.
以BD为直径的圆与直线PF相切.
证明如下:由题意可设直线AP的方程为y=k(x+2)(k≠0).
则点D坐标为(2,4k),BD中点E的坐标为(2,2k).
直线方程代入椭圆方程,可得(3+4k2)x2+16k2x+16k2-12=0.
设点P的坐标为(x0,y0),则-2x0=
| 16k2-12 |
| 3+4k2 |
所以x0=
| 6-8k2 |
| 3+4k2 |
| 12k |
| 3+4k2 |
因为点F坐标为(1,0),
当k=±
| 1 |
| 2 |
| 3 |
| 2 |
直线PF⊥x轴,此时以BD为直径的圆与直线PF相切.
当k≠±
| 1 |
| 2 |
| y0 |
| x0-1 |
| 4k |
| 1-4k2 |
所以直线PF的方程为y=
| 4k |
| 1-4k2 |
点E到直线PF的距离d=
|
| ||||
|
又因为|BD|=2R=4|k|,故以BD为直径的圆与直线PF相切.
综上得,当直线AP绕点A转动时,以BD为直径的圆与直线PF相切.…(15分)
点评:本题考查椭圆方程,考查直线和圆锥曲线的位置关系,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目