题目内容

已知A、B、C的坐标分别为A(4,0)、B(0,4)、C(3cosα,3sinα)
(Ⅰ)若a∈(-π,0),且|
AC
|=|
BC
|.求角α的值;
(Ⅱ)若
AC
BC
=0.求
2sina+sin2a
1+tana
的值.
AC
=(3cosα-4,3sinα);
BC
=(3cosα,3sinα-4)…(2分)
(Ⅰ)|
AC
|=|
BC
|.得(3cosα-4)2+9sin2α=9cos2α+(3sinα-4)2
∴sinα=cosα…(5分)
因为a∈(-π,0),所以α=-
4
…(7分)
(Ⅱ)∵
2sina+sin2a
1+tana
=
2sinacosα(cosα+sina)
sinα+cosa
=2sinαcosα…(9分)
AC
BC
=0,∴3cosα(3cosα-4)+3sinα(3sinα-4)=0…(11分)
∴sinα+cosα=
3
4
,两边平方可得:2sinαcosα=-
7
16


2sina+sin2a
1+tana
=-
7
16
…(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网