题目内容
求sec50°+tan10°的值.分析:把原式先转化成弦,再利用和差化积公式进行化简,最后可得出答案.
解答:解:sec50°+tan10°
=
+
=
+
=
+
=
+
=
=
=
=
=
=2cos30°
=
=
| 1 |
| cos50° |
| sin10° |
| cos10° |
=
| 2sin50° |
| 2sin50°cos50° |
| sin10° |
| cos10° |
=
| 2sin50° |
| sin100° |
| sin10° |
| cos10° |
=
| 2sin50° |
| cos10° |
| sin10° |
| cos10° |
=
| 2sin50°+sin10° |
| cos10° |
=
| sin50°+(sin50°+sin10°) |
| cos10° |
=
| sin50°+cos20° |
| cos10° |
=
| cos40°+cos20° |
| cos10° |
=
| 2cos30°cos10° |
| cos10° |
=2cos30°
=
| 3 |
点评:本题主要考查弦切互化的问题.要熟练掌握三角函数中的如和差化积、积化和差、倍角公式等常用公式.
练习册系列答案
相关题目