题目内容

求函数f(x)=
13
x3-4x+4
的极值.
分析:首先对函数求导,使得导函数等于0,解出x的值,分两种情况讨论:当f′(x)>0,即x>2,或x<-2时;当f′(x)<0,即-2<x<2时,列表做出函数的极值点,求出极值.
解答:解:∵f(x)=
1
3
x3-4x+4

∴f′(x)=x2-4=(x-2)(x+2).                           …3分
令f′(x)=0,解得x=2,或x=-2.                    …6分
下面分两种情况讨论:
当f′(x)>0,即x>2,或x<-2时;
当f′(x)<0,即-2<x<2时.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f′(x)
 
+ 0 _ 0 +
f(x) 单调递增
28
3

 
单调递减 -
4
3

 
单调递增
…9分
因此,当x=-2时,f(x)有极大值,且极大值为f(-2)=
28
3

当x=2时,f(x)有极小值,且极小值为f(2)=-
4
3
.…12分
点评:本题考查函数极值的求法,本题解题的关键是对函数求导,求出导函数等于0时对应的变量的取值,再进行讨论,本题是一个中档题目,这个知识点一般出现在综合题目中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网