题目内容

(本小题12分)已知函数

(1)若函数的值域为,求实数的取值范围;

(2)当时,函数恒有意义,求实数的取值范围。

 

【答案】

(1);(2) 

【解析】

试题分析:(1)对数函数的值域为R,意味着真数可以取遍一切正实数,故内层二次函数应与x轴有交点,即△≥0,解得a的范围;

(2)函数f(x)恒有意义,即真数大于零恒成立,利用参变分离法解决此恒成立问题即可得a的取值范围

解:(1)令,由题设知需取遍内任意值,所以解得  ,由于所以

(2)对一切恒成立且

对一切恒成立 ,,当时,取得最小值为,所以 

考点:本题主要考查了对数复合函数的定义域和值域,已知函数的值域求参数的范围,已知函数的定义域求参数范围,转化化归的思想方法。

点评:解决该试题的关键是能将不等式的恒成立问题,转换为函数的最值问题,运用分离参数 三四箱来得到参数a的取值范围。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网