题目内容
函数f(x)=x+
的单调递增区间是( )
| 9 |
| x |
| A、(-3,3) |
| B、(-3,+∞) |
| C、x2+2x+a>0,x∈[1,+∞) |
| D、(-∞,-3),(3,+∞) |
分析:求出函数y的导函数y′,因为要求单调递增区间,令y′>0得到不等式求出x的范围即可.
解答:解:y′=1-
=
∴令y′>0,得:
x<-3),或x>3,
∴函数f(x)=x+
的单调递增区间是(-∞,-3),(3,+∞)
故选D.
| 9 |
| x2 |
| x2-9 |
| x2 |
∴令y′>0,得:
x<-3),或x>3,
∴函数f(x)=x+
| 9 |
| x |
故选D.
点评:考查学生掌握利用导数研究函数的单调性的能力.求单调递增区间的方法:先确定函数的定义域然后求出函数的导涵数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,即可求出函数的单调区间,
练习册系列答案
相关题目
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
(x>0)在区间(0,2)上递减,函数f(x)=x+
(x>0)在区间 上递增;
(2)函数f(x)=x+
(x>0),当x= 时,y最小= ;
(3)函数f(x)=x+
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
| 4 |
| x |
| x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
| y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)函数f(x)=x+
| 4 |
| x |
| 4 |
| x |
(2)函数f(x)=x+
| 4 |
| x |
(3)函数f(x)=x+
| 4 |
| x |