题目内容

已知实数x、y满足2x2+3y2=2x,则x2+y2的最大值为


  1. A.
    数学公式
  2. B.
    1
  3. C.
    2
  4. D.
    4
B
分析:根据x、y满足2x2+3y2=2x,3y2=-2x2+2x≥0,则0≤x≤1,令u=x2+y2,根据配方法即可求其最大值.
解答:∵x、y满足2x2+3y2=2x,3y2=-2x2+2x≥0,
则0≤x≤1,令u=x2+y2
则u=x2+x=(x+1)2-
∴当x=1时,u有最大值为:1.
故选B.
点评:本题考查了二次函数最值,难度不大,关键是先求出x的取值范围再根据配方法求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网