题目内容
数列{an}满足a1=a2=1,an+an+1+an+2=cos
(n∈N*),若数列{an}的前n项和为Sn,则S2013的值为( )
| 2nπ |
| 3 |
| A.2013 | B.671 | C.-671 | D.-
|
∵数列{an}满足a1=a2=1,an+an+1+an+2=cos
(n∈N*),
∴从第一项开始,3个一组,则第n组的第一个数为a3n-2
a3n-2+a3n-1+a3n
=cos
=cos(2nπ-
)
=cos(-
)
=cos
=-cos
=-
,
∵2013÷3=671,即S2013正好是前671组的和,
∴S2013=-
×671=-
.
故选D.
| 2nπ |
| 3 |
∴从第一项开始,3个一组,则第n组的第一个数为a3n-2
a3n-2+a3n-1+a3n
=cos
| 2nπ |
| 3 |
=cos(2nπ-
| 4π |
| 3 |
=cos(-
| 4π |
| 3 |
=cos
| 4π |
| 3 |
=-cos
| π |
| 3 |
=-
| 1 |
| 2 |
∵2013÷3=671,即S2013正好是前671组的和,
∴S2013=-
| 1 |
| 2 |
| 671 |
| 2 |
故选D.
练习册系列答案
相关题目