题目内容
数列{an}满足a1=
,an+1=an2-an+1(n∈N*),Sn为数列{
}的前n项和,则S2012∈( )
| 3 |
| 2 |
| 1 |
| an |
分析:由已知a1=
,an+1=an2-an+1(n∈N*),可得an+1-an>0,得到数列{an}单调递增.再变形为an+1-1=an(an-1),即
=
-
,也即
=
-
.利用“裂项求和”可得m,再利用其单调性即可得出S2012所属于的区间.
| 3 |
| 2 |
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
解答:解:∵a1=
,an+1=an2-an+1(n∈N*),∴an+1-an=(an-1)2>0,∴an+1>an,∴数列{an}单调递增.
∴an+1-1=an(an-1)>0,
∴
=
-
,∴
=
-
.
∴Sn=
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
.
∴S2012=
-
=2-
.
∵a1=
,∴a2=(
)2-
+1=
,∴a3=(
)2-
+1=
×
+1=
+1>2,
∴a2013>a3>2,∴0<
<1,∴1<2-
<2.
∴S2012∈(1,2).
故选B.
| 3 |
| 2 |
∴an+1-1=an(an-1)>0,
∴
| 1 |
| an+1-1 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
∴Sn=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
=
| 1 |
| a1-1 |
| 1 |
| an+1-1 |
∴S2012=
| 1 | ||
|
| 1 |
| a2013-1 |
| 1 |
| a2013-1 |
∵a1=
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 7 |
| 4 |
| 7 |
| 4 |
| 7 |
| 4 |
| 7 |
| 4 |
| 3 |
| 4 |
| 21 |
| 16 |
∴a2013>a3>2,∴0<
| 1 |
| a2013-1 |
| 1 |
| a2013-1 |
∴S2012∈(1,2).
故选B.
点评:本题考查了通过恰当变形转化为“裂项求和”、数列的单调性等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目