题目内容
已知数列{an}中,a1=| 1 |
| 3 |
| 1 |
| an |
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
| 1 |
| nbn |
| 3 |
| 4 |
| 1 |
| n+2 |
分析:(I)先由n=1,求出b1,再由n≥2,求出bn-bn-1,由此可求出数列{bn}的通项公式.
(II)由题设知
=
,Tn=
+
+
++
=
[
-(
+
)]=
[
-
]
再由
>
=
知
[
-
<
[
-
]=
-
.
(II)由题设知
| 1 |
| nbn |
| 1 |
| n(n+2) |
| 1 |
| 1•3 |
| 1 |
| 2•4 |
| 1 |
| 3•5 |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
再由
| 2n+3 |
| (n+1)(n+2) |
| 2n+2 |
| (n+1)(n+2) |
| 2 |
| n+2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| n+2 |
| 3 |
| 4 |
| 1 |
| n+2 |
解答:解:(I)当n=1时,b1=
=3,
当n≥2时,bn-bn-1=
-
=
=1,
∴数列{bn}是首项为3,公差为1的等差数列,
∴通项公式为bn=n+2;(5分)
(II)∵
=
,
∴Tn=
+
+
++
=
[(1-
)+(
-
)+(
-
)++(
-
)]
=
[
-(
+
)]
=
[
-
]
∵
>
=
∴-
<-
∴
[
-
<
[
-
]=
-
∴Tn<
-
.(13分)
| 1 |
| a1 |
当n≥2时,bn-bn-1=
| 1 |
| an |
| 1 |
| an-1 |
| an-1-an |
| an•an-1 |
∴数列{bn}是首项为3,公差为1的等差数列,
∴通项公式为bn=n+2;(5分)
(II)∵
| 1 |
| nbn |
| 1 |
| n(n+2) |
∴Tn=
| 1 |
| 1•3 |
| 1 |
| 2•4 |
| 1 |
| 3•5 |
| 1 |
| n(n+2) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
∵
| 2n+3 |
| (n+1)(n+2) |
| 2n+2 |
| (n+1)(n+2) |
| 2 |
| n+2 |
∴-
| 2n+2 |
| (n+1)(n+2) |
| 2 |
| n+2 |
∴
| 1 |
| 2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| n+2 |
| 3 |
| 4 |
| 1 |
| n+2 |
∴Tn<
| 3 |
| 4 |
| 1 |
| n+2 |
点评:本题考查数列的性质和综合应用,解题时要注意数列递推式和裂项求和法的灵活运用.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|