题目内容
已知关于x的不等式x2+px+q<0的解集为(-
,
),则qx2+px+1>0的解集为
| 1 |
| 2 |
| 1 |
| 3 |
(-2,3)
(-2,3)
.分析:根据题意知-
和
可看作方程x2+px+q的两个根,从而能求出p,q的值,代入qx2+px+1>0,能求出不等式的解.
| 1 |
| 2 |
| 1 |
| 3 |
解答:解:由已知得x1=-
,x2=
是方程x2+px+q=0的根,
∴-p=-
+
=-
,q=-
×
=-
,
∴p=
,q=-
,
∴不等式qx2+px+1>0,
即-
x2+
x+1>0,
∴x2-x-6<0,
∴-2<x<3.
故答案为:(-2,3).
| 1 |
| 2 |
| 1 |
| 3 |
∴-p=-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
∴p=
| 1 |
| 6 |
| 1 |
| 6 |
∴不等式qx2+px+1>0,
即-
| 1 |
| 6 |
| 1 |
| 6 |
∴x2-x-6<0,
∴-2<x<3.
故答案为:(-2,3).
点评:本题考查一元二次不等式的解法,关键是知道不等式的解集和方程的解之间的联系,从而求解.
练习册系列答案
相关题目