题目内容

点P为△ABC的外接圆的圆心,且|
AC
|=4,则
AP
AC
=
8
8
分析:作PD⊥AC,交AC于D,由P为△ABC的外接圆的圆心,|
AC
|=4,知|
AD
|=2,故cos
AP
AC
=
2
|
AP
|
,由此能求出
AP
AC
解答:解:如图,P为△ABC的外接圆的圆心,
作PD⊥AC,交AC于D,
∵|
AC
|=4,∴|
AD
|=2,
∴cos
AP
AC
=
|
AD
|
|
AP
|
=
2
|
AP
|

AP
AC
=|
AP
|•|
AC
|•cos
AP
AC

=|
AP
|•|
AC
|•
|
AD
|
|
AP
|

=|
AP
|×4×
2
|
AP
|
=8.
故答案为:8.
点评:本题考查向量的数量积的运算,是基础题.解题时时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网