题目内容
点P为△ABC的外接圆的圆心,且|
|=4,则
•
=
| AC |
| AP |
| AC |
8
8
.分析:作PD⊥AC,交AC于D,由P为△ABC的外接圆的圆心,|
|=4,知|
|=2,故cos<
,
>=
,由此能求出
•
.
| AC |
| AD |
| AP |
| AC |
| 2 | ||
|
|
| AP |
| AC |
解答:
解:如图,P为△ABC的外接圆的圆心,
作PD⊥AC,交AC于D,
∵|
|=4,∴|
|=2,
∴cos<
,
>=
=
,
∴
•
=|
|•|
|•cos<
,
>
=|
|•|
|•
=|
|×4×
=8.
故答案为:8.
作PD⊥AC,交AC于D,
∵|
| AC |
| AD |
∴cos<
| AP |
| AC |
|
| ||
|
|
| 2 | ||
|
|
∴
| AP |
| AC |
| AP |
| AC |
| AP |
| AC |
=|
| AP |
| AC |
|
| ||
|
|
=|
| AP |
| 2 | ||
|
|
故答案为:8.
点评:本题考查向量的数量积的运算,是基础题.解题时时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目