题目内容
已知函数f(x)=x2+(a-1)x+b+1,当x∈[b,a]时,函数f(x)的图象关于y轴对称,数列{an}的前n项和为Sn,且Sn=f(n).
(1)求数列{an}的通项公式;
(2)设bn=
,Tn=b1+b2+…+bn,若Tn>m,求m的取值范围.
(1)求数列{an}的通项公式;
(2)设bn=
| an |
| 2n |
(1)∵函数f(x)的图象关于y轴对称,
∴a-1=0,且a+b=0,解得a=1,b=-1,
∴Sn=n2,即有an=Sn-Sn-1=2n-1(n≥2).
a1=S1=1也满足,
∴an=2n-1.(5分)
(2)由(1)得bn=
,
∴Tn=
+
+
+…+
+
,①
Tn=
+
+…+
+
+
,②
①-②得
Tn=
+
+
+…+
+
-
=
+(
+
+
+…+
)-
=
-
-
,
∴Tn=3-
-
=3-
.(9分)
设g(n)=
,n∈N+,
则由
=
=
=
+
≤
+
<1,得g(n)=
(n∈N+)随n的增大而减小,
∴g(n)≤g(1),
即Tn≥3-
=
.
又Tn>m恒成立,
∴m<
.(12分)
∴a-1=0,且a+b=0,解得a=1,b=-1,
∴Sn=n2,即有an=Sn-Sn-1=2n-1(n≥2).
a1=S1=1也满足,
∴an=2n-1.(5分)
(2)由(1)得bn=
| 2n-1 |
| 2n |
∴Tn=
| 1 |
| 21 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-3 |
| 2n-1 |
| 2n-1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-5 |
| 2n-1 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n-1 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
=
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 1 |
| 2n-2 |
| 2n-1 |
| 2n |
| 2n+3 |
| 2n |
设g(n)=
| 2n+3 |
| 2n |
则由
| g(n+1) |
| g(n) |
| ||
|
| 2n+5 |
| 2(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 2n+3 |
| 2n |
∴g(n)≤g(1),
即Tn≥3-
| 2+3 |
| 2 |
| 1 |
| 2 |
又Tn>m恒成立,
∴m<
| 1 |
| 2 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|