题目内容

10、设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则(  )
分析:先利用偶函数图象的对称性得出f(x)在(-∞,0)上是增函数;然后再利用x1<0且x1+x2>0把自变量都转化到区间(-∞,0)上即可求出答案.
解答:解:f(x)是R上的偶函数,且在(0,+∞)上是减函数
故  在(-∞,0)上是增函数
因为x1<0且x1+x2>0,故0>x1>-x2
所以有f(x1)>f(-x2).
又因为f(-x1)=f(x1),
所以有f(-x1)>F(-x2).
故选  A.
点评:本题主要考查抽象函数的单调性和奇偶性.抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.抽象函数的抽象性赋予它丰富的内涵和多变的思维价值,可以考查类比猜测,合情推理的探究能力和创新精神.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网