题目内容
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=( )
(A)2 (B)4 (C)6 (D)8
【答案】
B
【解析】如图,
![]()
设|PF1|=m,
|PF2|=n.
则![]()
∴![]()
∴mn=4.
∴|PF1|·|PF2|=4.故选B.
练习册系列答案
相关题目
已知F1,F2分别为双曲
-
=1(a>0,b>0)的左、右焦点,P为双曲线左支上任一点,若
的最小值为8a,则双曲线的离心率e的取值范围是( )
| x2 |
| a2 |
| y2 |
| b2 |
| |PF2|2 |
| |PF1| |
| A、(1,+∞) |
| B、(0,3] |
| C、(1,3] |
| D、(0,2] |