题目内容
已知抛物线
的准线与x轴交于点M,过点M作圆
的两条切线,切点为A、B,
.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
(1)求抛物线E的方程;
(2)过抛物线E上的点N作圆C的两条切线,切点分别为P、Q,若P,Q,O(O为原点)三点共线,求点N的坐标.
(1)y2=4x;(2)点N坐标为
或
.
试题分析:本题主要考查抛物线的标准方程及其几何性质、圆的标准方程及其几何性质、圆的切线的性质等基础知识,考查学生分析问题解决问题的能力和计算能力.第一问,利用抛物线的准线,得到M点的坐标,利用圆的方程得到圆心C的坐标,在
试题解析:(1)由已知得
设AB与x轴交于点R,由圆的对称性可知,
于是
所以
故抛物线E的方程为y2=4x. 5分
(2)设N(s,t).
P,Q是NC为直径的圆D与圆C的两交点.
圆D方程为
即x2+y2-(s+2)x-ty+2s=0. ①
又圆C方程为x2+y2-4x+3=0. ②
②-①得(s-2)x+ty+3-2s=0. ③ 9分
P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.
因为直线PQ经过点O,所以3-2s=0,
故点N坐标为
练习册系列答案
相关题目