题目内容
函数f(x)=
的定义域为
- A.{x|x≤
} - B.{x|x>0}
- C.{x|0≤x≤
} - D.{x|0<x≤
}
D
分析:由题意,令3-2x≥0且|x|+x≠0,解出其公共部分就可得到函数的定义域
解答:由题意有
解得0<x≤
即函数的定义域是{x|0<x≤
}
故选D
点评:本题考查函数的定义域及其求法,解题的关键是熟练掌握函数定义域的求法规则即偶次根号下非负,分母不为0等.
分析:由题意,令3-2x≥0且|x|+x≠0,解出其公共部分就可得到函数的定义域
解答:由题意有
即函数的定义域是{x|0<x≤
故选D
点评:本题考查函数的定义域及其求法,解题的关键是熟练掌握函数定义域的求法规则即偶次根号下非负,分母不为0等.
练习册系列答案
相关题目