题目内容
若x1满足2x+2x=5,x2满足2x+2log2(x-1)=5,则x1+x2=______.
由题意 2x1+2x1=5①
2x2+2log2(x2-1)=5 ②
所以 2x1=5-2x1,
x1=log2(5-2x1) 即2x1=2log2(5-2x1)
令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)
∴5-2t=2log2(t-1)与②式比较得t=x2
于是2x1=7-2x2
即x1+x2=
故答案为:
.
2x2+2log2(x2-1)=5 ②
所以 2x1=5-2x1,
x1=log2(5-2x1) 即2x1=2log2(5-2x1)
令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)
∴5-2t=2log2(t-1)与②式比较得t=x2
于是2x1=7-2x2
即x1+x2=
| 7 |
| 2 |
故答案为:
| 7 |
| 2 |
练习册系列答案
相关题目
若x1满足2x+2x=5,x2满足2x+2log2(x-1)=5,x1+x2=( )
A、
| ||
| B、3 | ||
C、
| ||
| D、4 |