题目内容
已知数列{an}的首项a1=| 1 | 2 |
分析:由题意知
=
,所以an=a1×
×
×…×
,计算可得答案.
| an |
| an-1 |
| n-1 |
| n+1 |
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
解答:解:∵Sn=n2an,Sn-1=(n-1)2an-1,
∴an=Sn-Sn-1=n2an-(n-1)2an-1,
∴
=
,
∴an=a1×
×
×…×
=
×
×
×… ×
=
.
答案:
.
∴an=Sn-Sn-1=n2an-(n-1)2an-1,
∴
| an |
| an-1 |
| n-1 |
| n+1 |
∴an=a1×
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 4 |
| n-1 |
| n+1 |
=
| 1 |
| n(n+1) |
答案:
| 1 |
| n(n+1) |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目