题目内容

已知函数f(x)=x2-2x+a,f(x)<0的解集为{x|-1<x<t}
(Ⅰ)求a,t的值;
(Ⅱc为何值时,(c+a)x2+2(c+a)x-1<0的解集为R.
解(1)∵x2-2x+a<0的解集为{x|-1<x<t}.∴-1+t=2,-1×t=a,解得t=3,a=-3.
(2)由(1)可知:a=-3,代入得(c-3)x2+2(c-3)x-1<0,因为其解集为R,
c-3<0
△<0
,或c=3.
解得2<c≤3.
故当2<c≤3满足条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网