题目内容

设O是直线AB外一点,
OA
=
a
OB
=
b
,点A1,A2,A3…An-1是线段AB的n,(n≥2)等分点,则
OA1
+
OA2
+
OA3
+…+
OAn-1
=
 
(用
a
b
,n表示).
分析:根据向量加法、减法的三角形法则以及
OA
=
a
OB
=
b
,点A1,A2,A3…An-1是线段AB的n,(n≥2)等分点,用向量
OA
=
a
OB
=
b
分别表示出
OA1
=
a
+
1
n
(
b
-
a
)
OA2
=
a
+
2
n
(
b
-
a
)
,…,
OAn-1
=
a
+
n-1
n
(
b
-
a
)
,然后再相加即可求得结果.
解答:解:由题意可得
OA1
=
OA
+
AA1
=
OA
+
1
n
AB
=
OA
+
1
n
(
OB
-
OA
)=
a
+
1
n
(
b
-
a
)

OA2
=
OA
+AA2
=
OA
+
2
n
AB
=
OA
+
2
n
(
OB
-
OA
)=
a
+
2
n
(
b
-
a
)


OAn-1
=
OA
+AAn-1
=
OA
+
n-1
n
AB
=
OA
+
n-1
n
(
OB
-
OA
)=
a
+
n-1
n
(
b
-
a
)

把以上n-1个式子相加得
OA1
+
OA2
+
OA3
+…+
OAn-1
=(n-1)
a
+
1+2+3+…+(n-1)
n
(
b
-
a
)

=(n-1)
a
+
n(n-1)
2n
(
b
-
a
)
=
n-1
2
(
a
+
b
)

故答案为
n-1
2
(
a
+
b
)
点评:此题是个基础题.本题考查向量加减混合运算的法则及几何意义,以及向量加法、减法满足的三角形法则,以及累加法求和,考查学生灵活应用知识分析解决问题的能力和计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网