题目内容
设O是直线AB外一点,| OA |
| a |
| OB |
| b |
| OA1 |
| OA2 |
| OA3 |
| OAn-1 |
| a |
| b |
分析:根据向量加法、减法的三角形法则以及
=
,
=
,点A1,A2,A3…An-1是线段AB的n,(n≥2)等分点,用向量
=
,
=
分别表示出
=
+
(
-
),
=
+
(
-
),…,
=
+
(
-
),然后再相加即可求得结果.
| OA |
| a |
| OB |
| b |
| OA |
| a |
| OB |
| b |
| OA1 |
| a |
| 1 |
| n |
| b |
| a |
| OA2 |
| a |
| 2 |
| n |
| b |
| a |
| OAn-1 |
| a |
| n-1 |
| n |
| b |
| a |
解答:解:由题意可得
=
+
=
+
=
+
(
-
)=
+
(
-
),
=
=
+
=
+
(
-
)=
+
(
-
),
…
=
=
+
=
+
(
-
)=
+
(
-
),
把以上n-1个式子相加得
+
+
+…+
=(n-1)
+
(
-
)
=(n-1)
+
(
-
)=
(
+
),
故答案为
(
+
).
| OA1 |
| OA |
| AA1 |
| OA |
| 1 |
| n |
| AB |
| OA |
| 1 |
| n |
| OB |
| OA |
| a |
| 1 |
| n |
| b |
| a |
| OA2 |
| OA |
| +AA2 |
| OA |
| 2 |
| n |
| AB |
| OA |
| 2 |
| n |
| OB |
| OA |
| a |
| 2 |
| n |
| b |
| a |
…
| OAn-1 |
| OA |
| +AAn-1 |
| OA |
| n-1 |
| n |
| AB |
| OA |
| n-1 |
| n |
| OB |
| OA |
| a |
| n-1 |
| n |
| b |
| a |
把以上n-1个式子相加得
| OA1 |
| OA2 |
| OA3 |
| OAn-1 |
| a |
| 1+2+3+…+(n-1) |
| n |
| b |
| a |
=(n-1)
| a |
| n(n-1) |
| 2n |
| b |
| a |
| n-1 |
| 2 |
| a |
| b |
故答案为
| n-1 |
| 2 |
| a |
| b |
点评:此题是个基础题.本题考查向量加减混合运算的法则及几何意义,以及向量加法、减法满足的三角形法则,以及累加法求和,考查学生灵活应用知识分析解决问题的能力和计算能力.
练习册系列答案
相关题目