题目内容
已知函数f(x)=m•2x+t的图象经过点A(1,1),B(2,3),及C(n,Sn),Sn为数列{an}的前n项的和,n∈N*(1)求Sn及an
(2)设bn=log2an-1,数列{bn}的前n项和为Tn,求证:
| 1 |
| T4 |
| 1 |
| T5 |
| 1 |
| Tn |
| 11 |
| 9 |
分析:(1)由2m+t=1得t=-1,4m+t=3m=1,所以f(x)=2x-1,Sn=2n-1n∈N*,所以an=2n-1(n∈N*).
(2)因为bn=log2an-1=n-2,所以Tn=
=
,所以,
=
=
(
-
),由此能够证明
+
+…+
<
(n≥4,n∈N*).
(2)因为bn=log2an-1=n-2,所以Tn=
| (n-2-1)n |
| 2 |
| n(n-3) |
| 2 |
| 1 |
| Tn |
| 2 |
| n(n-3) |
| 2 |
| 3 |
| 1 |
| n-3 |
| 1 |
| n |
| 1 |
| T4 |
| 1 |
| T5 |
| 1 |
| Tn |
| 11 |
| 9 |
解答:解:(1)由2m+t=1得t=-1
4m+t=3m=1(2分)
所以f(x)=2x-1则Sn=2n-1n∈N*(4分)
当n≥2时,an=Sn-Sn-1=2n-1
当n=1时,a1=S1=1满足上式,所以an=2n-1(n∈N*)(6分)
(2)证明:因为bn=log2an-1=n-2
所以Tn=
=
(8分)
所以,当n≥4时,
=
=
(
-
)(10分)
所以
+
++
=
(1-
)+
(
-
)+
(
-
)+
+
(
-
)=
(1+
+
-
-
-
)<
(13分)
4m+t=3m=1(2分)
所以f(x)=2x-1则Sn=2n-1n∈N*(4分)
当n≥2时,an=Sn-Sn-1=2n-1
当n=1时,a1=S1=1满足上式,所以an=2n-1(n∈N*)(6分)
(2)证明:因为bn=log2an-1=n-2
所以Tn=
| (n-2-1)n |
| 2 |
| n(n-3) |
| 2 |
所以,当n≥4时,
| 1 |
| Tn |
| 2 |
| n(n-3) |
| 2 |
| 3 |
| 1 |
| n-3 |
| 1 |
| n |
所以
| 1 |
| T4 |
| 1 |
| T5 |
| 1 |
| Tn |
| 2 |
| 3 |
| 1 |
| 4 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 6 |
+
| 2 |
| 3 |
| 1 |
| n-3 |
| 1 |
| n |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| n |
| 11 |
| 9 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关题目