题目内容
已知函数f(x)=x2+ax-(a+2)lnx-2
(1)当a=1时,求证:当x≥1时,f(x)≥0.
(2)若a<-2,探求f(x)的单调区间.
(3)求证:
+
+
+…+
>
-(
+
+
)(n≥4,n∈N*)
(1)当a=1时,求证:当x≥1时,f(x)≥0.
(2)若a<-2,探求f(x)的单调区间.
(3)求证:
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| lnn |
| 11 |
| 6 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
分析:(1)求导函数,确定f(x)在[1,+∞)为增函数,即可证得结论;
(2)求导函数,分类讨论,可得函数的单调区间;
(2)先证明
>
-
,再x分别取2,3,…,n,叠加即可得到结论.
(2)求导函数,分类讨论,可得函数的单调区间;
(2)先证明
| 1 |
| lnx |
| 1 |
| x-1 |
| 1 |
| x+2 |
解答:(1)证明:∵a=1,x≥1时,f′(x)=
≥0,
∴f(x)在[1,+∞)为增函数,
∴f(x)≥f(1)=0;
(2)解:f′(x)=
(x>0)
∴a∈(-4,-2)时,函数的单调增区间为(0,-
),(1,+∞),单调减区间为(-
,1);
a=-4,函数的单调增区间为(0+∞);
a<-4时,函数的单调增区间为(0,1),(-
,+∞),单调减区间为(1,-
);
(3)证明:由(1)得:当x>1时,x2+x-2<3lnx,
∴
>lnx
∴
>
-
∴
>
-
,
>
-
,
>
-
,…,
>
-
∴
+
+
+…+
>(1+
+
)-(
+
+
)=(
-(
+
+
)
| (2x+3)(x-1) |
| x |
∴f(x)在[1,+∞)为增函数,
∴f(x)≥f(1)=0;
(2)解:f′(x)=
| (2x+a+2)(x-1) |
| x |
∴a∈(-4,-2)时,函数的单调增区间为(0,-
| a+2 |
| 2 |
| a+2 |
| 2 |
a=-4,函数的单调增区间为(0+∞);
a<-4时,函数的单调增区间为(0,1),(-
| a+2 |
| 2 |
| a+2 |
| 2 |
(3)证明:由(1)得:当x>1时,x2+x-2<3lnx,
∴
| (x-1)(x+2) |
| 3 |
∴
| 1 |
| lnx |
| 1 |
| x-1 |
| 1 |
| x+2 |
∴
| 1 |
| ln2 |
| 1 |
| 2-1 |
| 1 |
| 2+2 |
| 1 |
| ln3 |
| 1 |
| 3-1 |
| 1 |
| 3+2 |
| 1 |
| ln4 |
| 1 |
| 4-1 |
| 1 |
| 4+2 |
| 1 |
| lnn |
| 1 |
| n-1 |
| 1 |
| n+2 |
∴
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| ln4 |
| 1 |
| lnn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 11 |
| 6 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|