题目内容

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为(  )
A.$\frac{{3{x^2}}}{25}-\frac{{3{y^2}}}{100}=1$B.$\frac{{3{x^2}}}{100}-\frac{{3{y^2}}}{25}=1$
C.$\frac{x^2}{20}-\frac{y^2}{5}=1$D.$\frac{x^2}{5}-\frac{y^2}{20}=1$

分析 先求出焦点坐标,利用双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得$\frac{b}{a}$=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.

解答 解:∵双曲线的一个焦点在直线l上,
令y=0,可得x=-5,即焦点坐标为(-5,0),∴c=5,
∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,
∴$\frac{b}{a}$=2,
∵c2=a2+b2
∴a2=5,b2=20,
∴双曲线的方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}$=1.
故选:D.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网