题目内容

若函数f(x)=ax+loga(x+1)(a>0且a≠1)在区间[0,2]上的最大值与最小值之和为a2,则a的值为
1
3
1
3
分析:结合函数y=ax与y=logax的单调性可知f(x)=ax+logax在[0,1]单调,从而可得函数在[0,2]上的最值分别为f(0),f(2),代入可求a
解答:解:∵y=ax与y=loga(x+1)在区间[0,2]上具有相同的单调性.
∴f(x)=ax+loga(x+1)在[0,2]上单调,
∴f(0)+f(2)=a2,即a0+loga1+a2+loga3=a2
化简得1+loga3=0,解得a=
1
3

故答案为:
1
3
点评:本题主要考查了指数函数与对数函数的单调性的简单运用,利用整体思想求解函数的最值,试题比较容易.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网