题目内容
数列
,
,
,A的前n项之和为
.
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| n |
| n+2 |
| n |
| n+2 |
分析:由于an=
=
=2(
-
),利用裂项求和即可求解
| 1 |
| 1+2+3+…+(n+1) |
| 2 |
| (n+2)(n+1) |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:解:由于an=
=
=2(
-
)
Sn=2(
-
+
-
+…+
-
)
=2(
-
)=
故答案为:
| 1 |
| 1+2+3+…+(n+1) |
| 2 |
| (n+2)(n+1) |
| 1 |
| n+1 |
| 1 |
| n+2 |
Sn=2(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1+n |
| 1 |
| n+2 |
=2(
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| n+2 |
故答案为:
| n |
| n+2 |
点评:本主要考查了数列的裂项求和方法的应用,解题的关键是寻求数列通项的规律.
练习册系列答案
相关题目
数列
,
,…
的前n项和为( )
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+…+n |
A、
| ||
B、
| ||
C、
| ||
D、
|